Overview
Teaching: 10 min Exercises: 10 minQuestions
How can I do statistical analysis of tabular data?
Objectives
Select individual values from a Pandas data frame.
Select entire rows or entire columns from a data frame.
Select a subset of both rows and columns from a data frame in a single operation.
Select a subset of a data frame by a single Boolean criterion.
DataFrame.ix[..., ...]
to select values by location.data = pandas.read_csv('data/gapminder_gdp_europe.csv', index_col='country')
print(data.ix["Albania", "gdpPercap_1952"])
print(data.ix[0, 0])
1601.056136
1601.056136
:
on its own to mean all columns or all rows.print(data.ix["Albania", :])
gdpPercap_1952 1601.056136
gdpPercap_1957 1942.284244
gdpPercap_1962 2312.888958
gdpPercap_1967 2760.196931
gdpPercap_1972 3313.422188
gdpPercap_1977 3533.003910
gdpPercap_1982 3630.880722
gdpPercap_1987 3738.932735
gdpPercap_1992 2497.437901
gdpPercap_1997 3193.054604
gdpPercap_2002 4604.211737
gdpPercap_2007 5937.029526
Name: Albania, dtype: float64
data.ix["Albania"]
(without a second index).print(data.ix[:, "gdpPercap_1952"])
country
Albania 1601.056136
Austria 6137.076492
Belgium 8343.105127
⋮ ⋮ ⋮
Switzerland 14734.232750
Turkey 1969.100980
United Kingdom 9979.508487
Name: gdpPercap_1952, dtype: float64
data["gdpPercap_1952"]
data.gdpPercap_1952
(since it’s a column name)DataFrame.ix
and a named slice.print(data.ix['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972'])
gdpPercap_1962 gdpPercap_1967 gdpPercap_1972
country
Italy 8243.582340 10022.401310 12269.273780
Montenegro 4649.593785 5907.850937 7778.414017
Netherlands 12790.849560 15363.251360 18794.745670
Norway 13450.401510 16361.876470 18965.055510
Poland 5338.752143 6557.152776 8006.506993
In the above code, we discover that slicing using indexes is inclusive at both ends, which differs from typical python behavior, where slicing indicates everything up to but not including the final index. However, if we use integers when our DataFrame is indexed by something else, slicing follows typical pythonic behavior.
print(data.ix['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972'].max())
gdpPercap_1962 13450.40151
gdpPercap_1967 16361.87647
gdpPercap_1972 18965.05551
dtype: float64
print(data.ix['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972'].min())
gdpPercap_1962 4649.593785
gdpPercap_1967 5907.850937
gdpPercap_1972 7778.414017
dtype: float64
True
and False
.# Use a subset of data to keep output readable.
subset = data.ix['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972']
print('Subset of data:\n', subset)
# Which values were greater than 10000 ?
print('\nWhere are values large?\n', subset > 10000)
Subset of data:
gdpPercap_1962 gdpPercap_1967 gdpPercap_1972
country
Italy 8243.582340 10022.401310 12269.273780
Montenegro 4649.593785 5907.850937 7778.414017
Netherlands 12790.849560 15363.251360 18794.745670
Norway 13450.401510 16361.876470 18965.055510
Poland 5338.752143 6557.152776 8006.506993
Where are values large?
gdpPercap_1962 gdpPercap_1967 gdpPercap_1972
country
Italy False True True
Montenegro False False False
Netherlands True True True
Norway True True True
Poland False False False
mask = subset > 10000
print(subset[mask])
gdpPercap_1962 gdpPercap_1967 gdpPercap_1972
country
Italy NaN 10022.40131 12269.27378
Montenegro NaN NaN NaN
Netherlands 12790.84956 15363.25136 18794.74567
Norway 13450.40151 16361.87647 18965.05551
Poland NaN NaN NaN
print(subset[subset > 10000].describe())
gdpPercap_1962 gdpPercap_1967 gdpPercap_1972
count 2.000000 3.000000 3.000000
mean 13120.625535 13915.843047 16676.358320
std 466.373656 3408.589070 3817.597015
min 12790.849560 10022.401310 12269.273780
25% 12955.737547 12692.826335 15532.009725
50% 13120.625535 15363.251360 18794.745670
75% 13285.513523 15862.563915 18879.900590
max 13450.401510 16361.876470 18965.055510
Selection of Individual Values
Assume Pandas has been imported into your notebook and the Gapminder GDP data for Europe has been loaded:
import pandas df = pandas.read_csv('data/gapminder_gdp_europe.csv', index_col='country')
Write an expression to find the Per Capita GDP of Serbia in 2007.
Extent of Slicing
- Do the two statements below produce the same output?
- Based on this, what rule governs what is included (or not) in numerical slices and named slices in Pandas?
print(data.ix[0:2, 0:2]) print(data.ix['Albania':'Belgium', 'gdpPercap_1952':'gdpPercap_1962'])
Reconstructing Data
Explain what each line in the following short program does: what is in
first
,second
, etc.?first = pandas.read_csv('data/gapminder_gdp_all.csv', index_col='country') second = df[df['continent'] == 'Americas'] third = second.drop('Puerto Rico') fourth = third.drop('continent', axis = 1) fourth.to_csv('result.csv')
Selecting Indices
Explain in simple terms what
idxmin
andidxmax
do in the short program below. When would you use these methods?data = pandas.load_csv('data/gapminder_gdp_europe.csv', index_col='country') print(data.idxmin()) print(data.idxmax())
Practice with Selection.
Assume Pandas has been imported and the Gapminder GDP data for Europe has been loaded. Write an expression to select each of the following:
- GDP per capita for all countries in 1982.
- GDP per capita for Denmark for all years.
- GDP per capita for all countries for years after 1985.
- GDP per capita for each country in 2007 as a multiple of GDP per capita for that country in 1952.
Interpretation
Poland’s borders have been stable since 1945, but changed several times in the years before then. How would you handle this if you were creating a table of GDP per capita for Poland for the entire Twentieth Century?
Key Points
Use
DataFrame.ix[..., ...]
to select values by location.Use
:
on its own to mean all columns or all rows.Select multiple columns or rows using
DataFrame.ix
and a named slice.Result of slicing can be used in further operations.
Use comparisons to select data based on value.
Select values or NaN using a Boolean mask.